Ahmed Anwar, Brian Moser, Dayananda Herurkar, Federico Raue, Vinit Hegiste, Tatjana Legler, and Andreas Dengel.
“FedAD-Bench: A Unified Benchmark for Federated Unsupervised Anomaly Detection in Tabular Data.” arXiv preprint arXiv:2408.04442 (2024). arXiv
Stanislav Frolov, Brian Moser, Sebastian Palacio, and Andreas Dengel
“ObjBlur: A Curriculum Learning Approach With Progressive Object-Level Blurring for Improved Layout-to-Image Generation.” In Proceedings of the 32nd ACM International Conference on Multimedia. 2024, pp. 10621–10629. arXiv
Lukas Helff, Felix Friedrich, Manuel Brack, Kristian Kersting, and Patrick Schramowski.
“LLavaGuard: VLM-based Safeguards for Vision Dataset Curation and Safety Assessment.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8322-8326. 2024. arXiv
|
Page
|
GitHub
Brian B. Moser, Ahmed Anwar, Federico Raue, Stanislav Frolov, and Andreas Dengel.
“Federated Learning for Blind Image Super-Resolution.” In International Conference on Neural Information Processing, pp. 316-331. Singapore: Springer Nature Singapore, 2024. arXiv
Brian B. Moser, Federico Raue, Sebastian Palacio, Stanislav Frolov, and Andreas Dengel.
“Latent dataset distillation with diffusion models.” arXiv preprint arXiv:2403.03881 (2024). arXiv
Dayananda Herurkar, Federico Raue, and Andreas Dengel.
“Tab-distillation: Impacts of dataset distillation on tabular data for outlier detection.” In Proceedings of the 5th ACM International Conference on AI in Finance, pp. 804-812. 2024. DFKI
Brian Moser, Federico Raue, and Andreas Dengel.
“A study in dataset pruning for image super-resolution.” In International Conference on Artificial Neural Networks. Springer. 2024, pp. 351–363. arXiv
Brian Moser, Federico Raue, Tobias Christian Nauen, Stanislav Frolov, and Andreas Dengel.
“Distill the best, ignore the rest: Improving dataset distillation with loss-value-based pruning.” In International Joint Conference on Neural Networks, June 30-July 5, Rome, Italy. IEEE, 2025. arXiv
Tobias Christian Nauen, Sebastian Palacio, Federico Raue, and Andreas Dengel.
“Which Transformer to Favor: A Comparative Analysis of Efficiency in Vision Transformers.” In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6955-6966. IEEE, 2025. arXiv
Tobias Christian Nauen, Brian Moser, Federico Raue, Stanislav Frolov, and Andreas Dengel.
“ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation.” arXiv preprint arXiv:2503.09399 (2025). arXiv